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Two technical reports covering the accomplishments in this project for the current period are 
appended. Below we provide an executive summary of the work performed. 

Objective and approach 
The long-term objective of this work is to develop a new type of one-point turbulence model 
for engineering analysis. The goal is to incorporate information about the energy-containing 
structure of turbulence which often plays a key role in the transport of the turbulence stresses. 
The absence of this type of information from practically all currently used one-point (eddy- 
viscosity and Reynolds stress transport) models is now recognized as one of the important 
factors limiting the performance of these models. The needed structure information is carried 
by new one-point tensors whose definitions and transport equations were obtained in the initial 
phase of this project. The new tensors are the dimensionality Dij, circulicity Fiit and third- 
rank stropholysis Q*jk tensors. 

Work under previous AFOSR support lead to two important accomplishments that formed the 
foundation for the current work. The first development was the construction of the Particle 
Representation Model (PRM) for the rapid distortion (RDT) of homogeneous turbulence. The 
PRM is in essence a simplified two-point theory of RDT that provides the conceptual founda- 
tion for the formulation of one-point models. The second development was the construction of 
a structure-based one-point model of the rapid distortion (RDT) of homogeneous turbulence. 

The objectives of this work for the current period were as follows: 
• To extend the theory for the evolution of the structure tensors in order to include flows 

with moderate and slow deformations. 
• To extend the theory for the evolution of the structure tensors in order to include flows 

with inhomogeneity and and wall-proximity effects. 
• To develop a one-point model for the prediction of the Reynolds stress evolution histories 

in homogeneous turbulence under arbitrary rapid and slow mean deformations. 
• To develop a one-point structure-based model for the prediction of the Reynolds stress 

transport in inhomogeneous turbulent flows. To validate this model in canonical wall-bounded 
flows. 

Accomplishments and continuation 

Work in the current period was aimed at the construction of extensions of the structure-based 
Particle Representation and one-point models to flows with slow or moderate mean defor- 
mations and wall proximity effects. The extended model can handle strong mean or frame 
rotation effects, a feature that will be important for the computation of aerodynamic and tubro- 
machinery flows. 

1. Interacting Particle Representation Model 

An important product of the current effort is the Interacting Particle Representation Model 
(IPRM), an emulation of the turbulent field by fictitious particles carrying key properties, that 
predicts the response of homogeneous turbulence to both rapid and slow deformations with 
impressive accuracy. An innovative feature of the IPRM is the inclusion of nonlinear effects 



through effective gradients rather than through classical return-to-isotropy terms. These ideas 
are described below. 

The IPRM is based on a simplified non-local theory (Particle Representation Model or PRM) 
for the RDT of homogeneous turbulence that was formulated under previous AFOSR funding. 
The original PRM idea was to represent the turbulence by an ensemble of fictitious particles. 
A number of key properties and their evolution equations are assigned to each particle. En- 
semble averaging produces a representation of the one-point statistics of the turbulent field, 
which is exactly correct for the case of RDT of homogeneous turbulence. In essence, this ap- 
proach represents the simplest theory beyond one-point methods that provides closure for the 
RDT equations without modeling. Using the PRM as the starting point, we also formulated a 
successful one-point structure-based model for the RDT of homogeneous turbulence. 

The Interacting Particle Representation Model (IPRM) is the more recent extension of the 
PRM formulation to include the effects of the nonlinear eddy-eddy interactions, important 
when the mean deformations are slow. Unlike standard models, which use return-to-isotropy 
terms, the IPRM incorporates nonlinear effects through the use of effective gradients. The 
effective gradients idea postulates that the background nonlinear particle-particle interactions 
provide effective mean velocity gradients acting on each particle in addition to the true mean 
velocity gradients. Structural information (carried by the new tensors) plays a key role in 
the formulation of the effective gradients model. An advantage of this formulation is the 
preservation of the RDT structure of the governing equations even for slow deformations of 
homogeneous turbulence. Experience has shown that the effective gradients model is a more 
realistic representation of nonlinear interactions than standard return-to-isotropy models. 

The IPRM is a quasi-two point approach in the sense that it carries information about the 
angular anisotropy of two-point correlations in the limit of vanishing separation between the 
two points. The IPRM modeling is now complete for homogeneous turbulence, and it is being 
used as the basis for the formulation of improved one-point models. 

2. One-point differential structure-based model 

For engineering use, we are constructing one-point models that are based directly on the IPRM 
ideas. An important product of the current effort has been a new one-point structure-based 
model, which we have termed the Q model. The Q model can handle both rapid and slow slow 
deformations of homogeneous turbulence with an accuracy that is comparable to that of the 
non-local IPRM. The extended one-point model is based directly on the IPRM formulation 
and involves the transport equations for the third-rank tensor, Qijk. The Reynolds stress, 
dimensionality tensor, Dij and Circulicity F^ tensors can be obtained from Qijk. Thus the 
Q-model is both componentality and dimensionality aware. 

Non-linear turbulence-turbulence interactions are important whenever the mean deformation 
is slow. In standard Reynolds Stress Transport (RST) models the modeling of nonlinear in- 
teractions is based on a return-to-isotropy assumption, which is not always appropriate. For 
example, direct numerical simulations and experiments show that after the removal of mean 
straining, following an axisymmetric expansion, the Reynolds stress anisotropy can actually 
increase! Similarly, the level of Reynolds stress anisotropy reached for given total mean strain 
is higher when the mean straining is applied slowly than when it is applied rapidly. 



The rather simplistic return-to-isotropy assumption is completely avoided in the Q-model be- 
cause the dimensionality information carried by the model can be used as in the IPRM for the 
formulation of effective gradients. Thus non-linear interactions are modeled in a more realistic 
manner and this enables the Q-model to capture counter-intuitive effects missed by standard 
models. 

Inhomogeneous effects are incorporated in the Qijk and e equations through the addition of 
standard gradient diffusion models that account for turbulent transport. Wall-proximity effects 
are incorporated in the Q-model through an elliptic relaxations scheme, based on the ideas of 
Durbin, but adapted to the transport of the one-point structure tensors. 

3. One-point algebraic structure-based turbulence model (ASBM) 

Until recently, our research efforts have been focused on complex turbulence models that in- 
corporate more physics than conventional Reynolds transport models. From this work we 
have learned a great deal about the kinematics and dynamics of turbulence under both slow 
and rapid mean distortion. In the past year, we started incorporating this insight into a tur- 
bulence model that is sufficiently simple to be affordable for engineering computations. The 
model uses algebraic equations to determine tensor, vector, and scalar parameters of the turbu- 
lence structure, and from these determines the turbulent stresses. The only partial differential 
equations involved are the transport equations for two turbulence scales (k-e or k-uj). The 
algebraic equations produce states consistent with rapid distortion theory for rapidly distorted 
turbulence, and in good agreement with experimental data and numerical simulations for mod- 
erate distortion rates. The correct kinematic and dynamic effects of mean or frame rotation 
are captured, making the model particularly advantageous for turbomachinery flows and flows 
with strong rotation. The model is the only two-equation model to display material indiffer- 
ence to rotation for two-dimensional turbulence having its axis of independence aligned with 
the axis of rotation. 

Under certain conditions, homogeneous turbulence subjected to shear in a rotating frame can 
attain an equilibrium state in which the normalized stresses r^ = Rij/Rkh remain constant, 
while the energy k and dissipation rate e grow and the time scale r remains fixed. The ASBM 
is consistent with this equilibrium state. 

Near a wall the structure and stress need to be adjusted for wall blockage. At a wall, the 
eddies must all lie in the plane of the wall and all must be fully jetal (motion along eddy 
axis). We accomplish this with a procedure resembling elliptic relaxation. However, unlike 
the elliptic relaxation formulation for RST models, which is based on purely mathematical 
considerations, the wall blockage scheme in the ASBM is based on physical arguments about 
the effect of wall blockage on the turbulence structure. 

4. Continuation and Transitioning 

Work on the extension of the model to cover moderate and slow deformations is now com- 
plete. The extension of structure-based modeling to wall-bounded and inhomogeneous turbu- 
lent flows is being completed under new AFOSR support with a focus on refining the elliptic 



relaxation scheme as adapted in the Q-model. In parallel, we have initiated an effort to formu- 
late a two-equation Algebraic Structure-Based Model (ASBM). The ASBM is an engineering 
simplification of the current work, which aims in capturing the key physics we have included 
in the more complex Q-model, but avoids the tensor complexity that is undesirable for en- 
gineering applications. In the development of the ASBM, effort is also directed towards the 
development of an improved second turbulence scale equation that takes advantage of the 
structure-information carried by ASBM. It is expected that upon the completion of this last set 
of simplifications and extensions, the structure-based modeling will reach a level of maturity 
that will allow testing in realistic flows of engineering interest. 
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Abstract 

The performance of Reynolds Stress Transport (RST) models in non-equilibrium flows 
is limited by the lack of information about two dynamically important effects: the role 
of energy-containing turbulence structure (dimensionality) and the breaking of reflectional 
symmetry due to strong mean or frame rotation. Both effects are fundamentally nonlocal 
in nature and this explains why it has been difficult to include them in one-point closures 
like RST models. Information about the energy-containing structure is necessary if tur- 
bulence models are to reflect differences in dynamic behavior associated with structures of 
different dimensionality (nearly isotropic turbulence vs. turbulence with strongly organized 
two-dimensional structures). Information about the breaking of reflectional symmetry is 
important whenever mean rotation is dynamically important (flow through axisymmetric 
diffuser or nozzle with swirl, flow through turbomachinery, etc.). Here we present a new 
one-point model that incorporates the needed structure information, and show a selection 
of results for homogeneous and inhomogeneous flows. 

1. Introduction 

Reynolds-averaged turbulence models are the primary tool for the engineering analysis 
of complex turbulent flows, but their performance in flows that must be computed in or- 
der to advance technology is at best inconsistent. Dynamically important features of the 
turbulence structure are inherently nonlocal in nature, and thus difficult to emulate in one- 
point closures, yet they cannot be completely ignored in models that are designed for use 
in complex flows. This lack of crucial information is now recognized as one of the primary 
challenges facing one-point turbulence modeling. 

Consider for example the case of Reynolds Stress Transport (RST) models where the 
Reynolds stresses R{j are used for closing the unknown terms in their own transport equa- 
tions. Rij carries information about the componentality of the turbulence (the relative 
strengths of different velocity components), but not about its dimensionality (the relative 
uniformity of the structure in different directions). Thus RST models cannot possibly sat- 
isfy conditions associated with the dimensionality of the turbulence, or reflect differences 
in dynamic behavior associated with structures of different dimensionality (nearly isotropic 



turbulence vs. turbulence with strongly organized two-dimensional structures). Similarly, 
well known limitations of RST models in predicting flows with strong rotation can be, at 
least partly, traced back to the lack of dimensionality and other information. 

The issues outlined above, and discussed in more detail in Reynolds k Kassinos (1995) 
and Kassinos, Reynolds & Rogers (2001), let us to introduce a set of one-point turbulence 
structure tensors that contain key information missing from standard one-point closures. 
Here we outline the construction of a one-point model based on the transport of one of 
these tensors, and show a selection of results for homogeneous and inhomogeneous flows. 

2. Definitions 

We introduce the turbulent stream function ^, defined by 

t4 = eitX,t    *S,i = 0    *i,nn = -^> (!) 

where u^ and u)[ are the fluctuating velocity and vorticity components. The Reynolds stress 
tensor is given by     

Rij = ujuj = eipqejts%jP%tt, (2a) 

and the associated nondimensional and anisotropy tensors are 

rij = Rij/q2        fij = Uj - \5ij . (2b) 

Here q2 = 2k = Ru. Using isotropic tensor identities (Mahoney 1985), we can write (2a) as 

Äy + n,i*M + *{,**i.fc 

Fii (3) 

-(n**w+*;,**w=^«i 
V 

Cij+Cji 

The constitutive equation (3) shows that one-point correlations of stream-function gradients, 
like the Reynolds stresses, are dominated by the energy-containing scales. These correlations 
contain independent information that is important for the proper characterization of non- 
equilibrium turbulence. For example, the Dij tensor reveals the level of two-dimensionality 
(2D) of the turbulence, and F^ describes the large-scale structure of the vorticity field 
(Kassinos, Reynolds &; Rogers, 2001). 

In homogeneous turbulence, the new structure tensors are most conveniently defined in 
terms of their associated spectra. It is useful to recall that in this case, discrete Fourier 
expansions can be used to represent individual realizations in a box of length L. Then the 

discrete cospectrum of two fields / and g is given by Xij(k) = (L/2-n)zfi(k)g*j(k), where 
the bar represents an ensemble average over the box. The cospectrum of two fields Xjj(k) 

is the limit of the discrete cospectrum Xij as L -> oo. Here we use Xij(k) ~ fi(k)gj(k) as 
a shorthand notation, but the exact definition should be kept in mind. 



For homogeneous turbulence Qj = Cji = 0, and the remaining tensors in (3) have equivalent 
representations in terms of the velocity spectrum tensor Eij(k) ~ üiü*j and the vorticity 

spectrum tensor Wij{k) ~ Wity. These are given below. 
Structure dimensionality tensor: 

Ai = J^-Enn(k)d3k 

dij = Dij/q2    dij = dij - \5ij (4) 

Structure circulicity tensor: 

Fij= ITij(k)d3k 

fij — Fij/O. fij — fij * 3% • (5) 

Here Tij(k) is the circulicity spectrum tensor, which is related to the vorticity spectrum 
tensor Wij{k) — uJiü*j through the relation 

*,<*> = *^. 

We define the third rank tensor 

Qijk = -u'j%,k       ftifc = Qijk/q  , (6) 

where we have used q2 = 2k = Ru for the normalization.   For homogeneous turbulence, 

Qijk is 
Qijk = C-ipqMjqpk \l) 

where Mijpq is 

Miivq = f1^Eij{k)^h. (8) 

The definition of the third-rank fully symmetric stropholysis tensor is given by 

Qijk = I (Qijk + Qjki + Qkn + Qikj + Qjik + Qkji) ■ (9) 

For homogeneous turbulence, Qijk and Q*jk are bi-trace free 

Qnk = Qiki = Qkii = 0        Q*ik = 0. (10) 

A decomposition based on group theory shows that Qijk and Q^k (here we use q*jk = 
Q*k/q2) are related to each other and to lower-rank tensors, 

Qijk — Q  [§eijk ,-. -.\ 

"T" 3 \€-ikmrmj   i   (-jim^mk   i   ^kjmjmi)   i   Qijkli 

and 
fij = timpQmjp      U-ij = ^impQpTnj      Jij = ^impQjpm • \*-^) 



3. Model Formulation For Homogeneous Turbulence 

The one-point structure-based model carries the transport equation for Q and a model 
transport equation for the dissipation rate e. The formulation of the model is based on 
simplified nonlocal theory making use of structure modeling ideas. In Section 3.1 we outline 
this nonlocal theory and in Section 3.2 we show how it leads to the one-point model. 

3.1 IPRM formulation 

Kassinos & Reynolds (1994,1996) formulated a simplified nonlocal theory (Particle Rep- 
resentation Model or PRM) for the Rapid Distortion Theory (RDT) of homogeneous tur- 
bulence. The original idea was to represent the turbulence by an ensemble of fictitious 
particles. A number of key properties and their evolution equations are assigned to each 
particle. Ensemble averaging produces a representation of the one-point statistics of the tur- 
bulent field, which is exact for the case of RDT of homogeneous turbulence. In essence, this 
approach represents the simplest theory beyond one-point methods that provides closure for 
the RDT equations without modeling. 

The Interacting Particle Representation Model (IPRM) is an extension of the PRM for- 
mulation that includes the effects of nonlinear eddy-eddy interactions, important when the 
mean deformations are slow. Unlike standard models, which use return-to-isotropy terms, 
the IPRM incorporates nonlinear effects through the use of effective gradients. The effective 
gradients idea postulates that the background nonlinear eddy-eddy interactions provide a 
gradient acting on each particle in addition to the actual mean velocity gradient. An advan- 
tage of this formulation is the preservation of the RDT structure of the governing equations 
even for slow deformations of homogeneous turbulence. A detailed account of these ideas is 
given in Kassinos & Reynolds (1996, 1997) and will not be repeated here. To a large extent, 
the one-point Q-model is based on the IPRM formulation. 

Each of the hypothetical particles in the IPRM is assigned a set of properties: 
• V velocity vector 
• W vorticity vector 
• S stream function vector 
• N gradient vector 
• P pressure. 

The stream function, velocity, and gradient vectors of each particle form an orthogonal triad, 
i.e. 

Vi — eirzsznr        ViVj + SiSj + UiUj = d~ij (13) 

where 
m = Ni/N   Vi = Vi/V   Si = Si/S (14) 

are unit vectors. 
In the IPRM we follow the evolution of "clusters" of particles, each cluster representing a 
collection of particles having the same unit gradient vector rn. Averaging over the parti- 
cles of a given cluster produces conditional moments. Averaging the conditional statistics 
over all clusters produces the one-point statistics for the turbulent field. For homogeneous 
turbulence it is computationally efficient to track clusters rather than individual particles 
(Kassinos & Reynolds 1996). 



G\j = —rikdkj 

The governing equations for the conditional (cluster averaged) IPRM formulation are (see 
Kassinos k Reynolds 1996) 

■hi = -Gjwrifc + Glrnknrrii (15) 

Rij = -GVik
Rkj ~ Gv

jkRki 

+ [Glm + GUidLwj + R^rn) (16) 

- [2d^ - C}$k(6ij - THTIJ)} . 

Here rii(t) is the unit gradient vector and R^ is the conditional Reynolds stress tensor 
corresponding to a cluster of particles with a common rii(t). The effective gradients are 

G» = Ga + CnG%       G?. = Gij + CTGZj , (17) 

where Gij is the mean velocity gradient and 

1 
r* 

The constants Cv and Cn are taken to be Cn = 2.2CV = 2.2. The different values for these 
two constants account for the different rates of return to isotropy of Aj and Rij. 

The IPRM time scale r* is chosen so as to produce the proper dissipation rate for the 
turbulent kinetic energy . The rate of dissipation produced by the IPRM equation (16) is 

G° 
£PRM = q

2—rikdkmrmi. (18) 
r* 

We choose the time scale r* so that ePRM = e, where e is the dissipation rate obtained from 
a model dissipation transport equation. This requires 

r* = TCvrikdkmrmi, (19) 

where r is the turbulent time scale, which for homogeneous turbulence (at high Reynolds 
numbers) is simply q2/s. Thus to complete the IPRM we use the standard model equation 
for the dissipation rate e with a modification to account for the suppression of e due to 
mean rotation, 

i = — Co CsSpqRpq Cn yünümdnm £ . (20) 

Here Qi is the mean vorticity vector, and the constants are 

Co = f        Cs = 3.0       and       Cn = 0.01. (21) 

The last term in (16) accounts for rotational randomization due to eddy-eddy interactions. 
We require that the rotational randomization model leaves the conditional energy unmodi- 
fied. This requires that C\ = Cf> and hence using dimensional considerations we take 

d = Cl = ^ü*fpqnpnq (22) 

where Ü* = v^Pl and ü* = eipq°e qp- 



3.2 The stropholysis equation 

We consider general deformations of homogeneous turbulence. The most convenient 
method for deriving the Q equation is to use the conditional (cluster averaged) IPRM 
formulation to obtain the evolution equation for M [see (8)], and then contract the M equa- 
tion with the alternating tensor eijk according to (7) in order to extract the Q equation. 
The PRM representation for Q and M is 

Qijk = -{V2viSink)       Mijpq = {V2ViVjnpnq) (23) 

where s{ = eikzVknz/V is the unit stream function vector (see Kassinos & Reynolds 1997). 
Hence using (15) and (16) and the definitions (7) and (23), one obtains 

—jr~ = -Gv
jrnQimk - GnkQijm - GV

smeitsMjmtk 
at J 

~ GmteitsMjsmk + [Gwq + (jwq\Qiqwjk 

+ 2GqrQijkqr ~ 8-5 fl   frs[Qijkrs + Qjikrs] ■ 

Using the PRM representation, Qijkqr = (V2VjSinknqnr). 

3.3 Closure of the stropholysis equation 

Closure of (24) requires a model for the tensor Qijkpq in terms of Qijk- Once such a 
model has been specified, it effectively provides a model for Miim in terms of Qijk since 
Mijpq can be obtained from Qijkpq by a contraction with eijk. For small anisotropies, one 
can write an exact representation of Qijkpq in terms of Qijk that is linear in Qijk. Other 
tensors, like Rij, Dtj and F^-, can be expressed in terms of Qijk [see (12)] and need not be 
included explicitly in the model. Definitions (contractions and continuity) determine all the 
coefficients in the linear model. Thus the linear model contains no adjustable parameters. 

In the presence of mean rotation, rotational randomization is an important dynamical effect 
that must be accounted for in the model. Rotational randomization, a strictly nonlocal 
effect that is lost in the averaging procedure generating the one-point statistics, is caused 
by the differential action of mean rotation on particle velocity vectors (Fourier modes) 
according to the alignment of the corresponding gradient (wavenumber) vectors with the 
axis of mean rotation. The main impact of Fourier randomization on one-point statistics 
is the damping of rotation-induced adjustments; here this effect is added explicitly through 
the simple model, 

^^ = . . . - -YliQijk ~ Qijk) ~ 72 eijm(Rmk - Dmk) - 73 CikmiFmj - Dmj). (25) 

The first term accounts for the rotational randomization effects in rotation dominated flows 
while the remaining two terms account for the modification of these effects due to the 
combined action of mean strain and rotation.  Qrf is the limiting state of Q under rapid 



rotation. Here 71, 72 and 73 are scalar functions of the invariants of the mean strain and 
rotation and are determined from simple test cases. 

The new one-point model produces excellent results for general irrotational deformations 
of homogeneous turbulence. A particularly interesting example is shown in Figure 1 where 
we consider the case of irrotational axisymmetric expansion (axisymmetric impingement). 
The mean velocity gradient tensor in this case is 

(26) 

and the total strain 

exp([ \S\t'dt') 
Jo 

(27) 

is used as the horizontal axis in Figure 1. As was discussed in Kassinos & Reynolds (1996, 
1997), the axisymmetric expansion flow exhibits a paradoxical behavior, where a slower 
mean deformation rate produces a stress anisotropy that exceeds the one produced under 
RDT for the same total mean strain. This effect is triggered by the different rates of return 
to isotropy in the f and d equations, but it is dynamically controlled by the rapid terms. 
The net effect is a growth of f at the expense of d, which is strongly suppressed. The one- 
point model (see Figure 1) is able to capture these effects well and also predicts the correct 
decay rates for the normalized turbulent kinetic energy k/k0 and dissipation rate e/e0. The 
predictions of the one-point Q-model are comparable to those of the IPRM. 

0.4 

0.2 

0.0 

-0.2 

-0.4 

(b) dij 

11 

r-7 

22,33 

c c 
FIGURE 1. Comparison of the one-point Q-model predictions (dashed lines) with IPRM 
results (solid lines) and the 1985 DNS by Lee & Reynolds (symbols) for the axisymmetric 
expansion case EXO (Sq*/e0 = 0.82). (a)-(c) evolution of the Reynolds stress, dimensional- 
ity, and circulicity anisotropies; 11 component (• ), 22 and 33 components (T). (d) evolution 
of the normalized turbulent kinetic energy (• ) and dissipation rate (T). 
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(b) dij 

11 • • 

22 
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0.6 

0.4 

0.2 

0.0 

-0.2 

-0.4 

(c) fij 
-*-**^   33 

• 

FIGURE 2. Comparison of the one-point Q-model predictions (dashed lines) with the 
IPRM results (solid lines) and the 1985 DNS by Lee k, Reynolds (symbols) for the plane 
strain case PXA (Sq2/e0 = 1.0). (a)-(c) evolution of the Reynolds stress, dimensionality, 
and circulicity anisotropies; 11 component (• ), 22 component (■), 33 component (A), (d) 
evolution of the normalized turbulent kinetic energy (• ) and dissipation rate (Y). 

In Figure 2 we consider deformation by plane strain (S33 = -S22 = S all other components 
zero) As shown in Figure 2 (corresponding to Sq2/e0 = 1.0) the performance of the one- 
point model is similar to that of the IPRM and its predictions compare favorably with the 
DNS results by Lee & Reynolds (1985). The details in the evolution histories of fy, dy and 
fij are captured well and the correct rates are predicted for the decay of the (normalized) 
turbulent kinetic energy k/k0 and dissipation rate e/s0. 

A case is that very important for the validation and calibration of one-point turbulence 
models is that of homogeneous shear flow. The predictions of the one-point Q-model for the 
case of homogeneous shear (where the mean gradient is G12 = L) are shown in Figure 3. 
Comparison is made to the DNS results by Rogers & Moin (1987). Note that the model 
produces satisfactory predictions for the components of r^ = Rij/q2, d^ = Dij/q2, and 
fij = Fij/q2. A fully-developed state was reached in the simulations for Tt > 10, and in 
this range both the Q-model and the IPRM predict the correct level for the dimensionless 
ratio of production over dissipation, P/e. Here we define P — -SijRij. 

Note that in fully developed homogeneous flow rü < r22, r33 and dn « d22, d33 indicating 
the predominance large scale eddies elongated in the streamwise direction. A more detailed 
discussion of the structure of structural features of homogeneous shear as captured by the 
one-point structure tensors can be found in Kassinos, Reynolds and Rogers (2001). 
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FIGURE 3.     Comparison of Q-model predictions (lines) and the 1987 DNS by Rogers & 
Moin (symbols),   (a)-(c) evolution of the Reynolds stress, dimensionality, and circulicity 
components in homogeneous shear with Tq%/eQ = 4.72:   11 component, ( ,   o ); 22 
component, ( ,   V); 33 component, ( ,  D); 12 component, ( ,  ♦). (d) evo- 
lution of production over dissipation rate (P/e): model, ( ); IPRM, ( ); DNS (■) 

A challenge for one-point models is found in the elliptic streamlines flow (see Figure 4), 

Gij 0 < \e\ < |7| (29) 

where the effects of mean rotation and plane strain are combined so as to emulate conditions 
encountered in turbomachinery. (Note that the case e = 0 corresponds to pure rotation while 
the case |e| = |7| corresponds to homogeneous shear). 

Direct numerical simulations (Blaisdell & Shariff 1996) show exponential growth of the 
turbulent kinetic energy in elliptic streamline flows, which analysis shows is associated with 
resonant instabilities in narrow wavenumber bands in wavenumber space. Standard RST 
models erroneously predict decay of the turbulence. As shown in Figure 4, the one-point Q- 
model is able to capture the main features of the oscillations observed in the components of 
the Reynolds stress anisotropy fij. Furthermore, the model is able to capture an exponential 
growth of the turbulent kinetic energy. Note however that the initial growth rate predicted 
by both the nonlocal IPRM and the Q-model falls short of the rate predicted by the DNS. 
At longer times, the growth rates predicted by both models compare more favorably to those 
observed in the DNS. 
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FIGURE 4.      Comparison of model predictions (lines) for the evolution of the Reynolds 
anisotropy in elliptic streamline flow (E=2.0) with the 1996 DNS by Blaisdell & Shariff 
(symbols), (a) one-point Q-model vs DNS, (b) IPRM vs DNS: 11 component, ( ,  o ); 
22 component, ( , V); 33 component, ( , D); 13 component, ( , ♦). Growth 
of the normalized turbulent kinetic energy: (c) one-point Q-model (line) vs DNS (symbols), 
(d) IPRM (line) vs DNS (symbols). 

A particularly interesting test case is that of homogeneous shear (G12 = T) in a frame 
rotating about the streamwise direction xx 

0    T    0 
Gij; =  [  0     0     0 

0    0    0 
fif = nf5n (30) 

The configuration of this flow is similar to what one finds in turbulent flow through a rotating 
pipe, without of course the complications due to the presence of the pipe walls. Admittedly, 
some of those complications are vital in predicting rotating pipe flow, but nevertheless the 
simplified case considered here highlights the role played by the rapid pressure-strain-rate 
term in this family of flows, and brings to focus some of the limitations of standard RST 
models. This flow is a challenging test case for turbulence models because the streamwise 
rotation of the frame activates all three shear stresses and also components of the rapid- 
pressure strain rate term that are zero in homogeneous shear flow in a fixed frame. Some 
of the limitations of standard RST models are shown in Figure 5, where we compare the 
predictions of the one-point Q-model and a standard RST model with those of a two-point 
(IPRM) simulation (DNS of this flow are currently being completed at Stanford University). 
As shown in Figures 5(a) and 5(c), the Q-model predicts the correct sign for the stress 
component r13. This is important because n3 affects the evolution of the shear stress ru. 
The Q-model captures a reasonable level for ri2 and therefore predicts an exponential growth 
of the turbulent kinetic energy in agreement with the two-point simulation. Standard RST 
models, however, an example of which is shown in Figure 5(b) and 5(d), predict the wrong 
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sign for ri3, and as a result they predict a vanishing shear stress r12 and, as expected, a 
decreasing turbulent kinetic energy. 

0        2        4        6        8       10 0        2        4        6        8       10 

n rt 
FIGURE 5. Comparison of one-point model predictions (dashed lines) with those of two- 
point IPRM simulations (solid lines) for the homogeneous shear in a frame rotating about 
the streamwise direction (rg0

2/e0 = 4.72, ft'/r = 1-0)- (a) one-point Q-model vs IPRM for 
the evolution of r^, (b) standard RST model vs IPRM for the evolution of rii? (c) one-point 
Q-model vs IPRM for the evolution of k/k0, (d) standard RST model vs IPRM for the 
evolution of k/k0. 

4. Inhomogeneous Turbulence 
The Qijk evolution equation for homogeneous turbulence [see (24) and (25)] is general- 

ized in order to account for inhomogeneous effects (spatial gradients and wall blocking). 
Inhomogeneous effects are incorporated in the Qijk and e equations through the addition of 
standard gradient diffusion models, accounting for turbulent transport, as outlined below 

DQijk 
Dt 

d 
= &;*+«-(["* dxr <JQ axs 

1 Olcgijk, 

De     „       9  n  . de 
I -»1-rS '  J  r\ 

Or OX •]^r). 

(31) 

(32) 

where Qijk represents the right-hand side of equation (25), and £ represents the right- 
hand side of equation (20). The turbulent kinetic energy is obtained from k = eikjQijk/2. 
Following Durbin (1993), the coefficient of the production term in the e equation is sensitized 
to the ratio of Production to dissipation as Cs = 2.7(1 + Q.lP/e). 
Near-wall effects are incorporated in the Q-model through an elliptic relaxation scheme 
based on the ideas of Durbin. In essence, terms in the transport equation (25) for Qijk 

that are not associated with either production or dissipation of the turbulent kinetic energy 
are lumped in a term named pijk.  Thus pijk is a model for redistributive processes that 
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is valid for homogeneous turbulence. We use kfijk to denote an augmented version of this 
model that is valid in inhomogeneous turbulence. kfijk reproduces satisfactorily near-wall 
redistributive processes, while reducing to pijk sufficiently far from solid boundaries. The 
final form of the transport equation for Qijk is 

—pjT— = —GjTnQimk — -zGtmetik"-mj 

+ jGjmiQimk + Qkmi) ~ T^J* (33) 

where fijk is obtained by an elliptic relaxation equation, 

L2V2fijk - fijk = -Pijk/k , (34) 

and the simplest description of pijk is 

Pijk = Qijk + GjmQimk + -GtmetikRmj 

2 

•^tm^-tik^-mj 
(35) 

— ^Gjm{Qimk + Qkmi) "I Qij'fc 

The elliptic relaxation approach introduces some degree of non-locality back into the equa- 
tions, which is particularly important near walls. The scheme described above allows us to 
capture the correct near-wall asymptotics and therefore the correct production of turbulent 
kinetic energy and the correct ratio of viscous to turbulent transport near the wall. Suffi- 
ciently far from the wall, kfijk = pijk, and the homogeneous model is recovered. This is 
in analogy to the elliptic relaxation scheme applied to RST models by Durbin. 
At the wall k goes to zero, and so do the usual turbulent time and length scales. However 
these scales should be finite at the wall, with a lower bound given by their Kolmogorov 
estimates. To reconcile these facts we define the time scale r as a blending between the 
turbulent time scale k/e and the Kolmogorov time scale, (v/e)*. Similarly the length scale 
L is a blending between the turbulent length scale k*/e and the Kolmogorov length scale 
(u3/e)i, along the lines of Pettersson et al. (1998). 

4-1 Representative results 

Preliminary results obtained with the Q-model for fully developed channel flow are en- 
couraging. The model was implemented in a ID-code using elliptic relaxation, as outlined 
above, and integrated throughout the entire domain, including the near-wall regions. A 
comparison of the Q-model predictions with DNS data (Moser, Kim & Mansour, 1999) for 
fully developed channel flow at ReT = 395 is shown in Figure 6. 
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FIGURE 6. Comparison of model predictions with DNS (Moser, Kim & Mansour, 1999) for 
fully developed channel flow at ReT = 395. (a) components of the Reynolds stress tensor, 
(b) components of the Reynolds stress tensor normalized by its trace: model, ( ); DNS 
( ). (c) mean velocity, (d) dissipation rate: model, ( ); DNS, (D). 

The Reynolds stress components (nondimensionalized by the wall shear velocity uT) are 
shown in Figure 6a. The agreement between the model predictions (dashed lines) and the 
DNS (solid lines) is satisfactory. The model slightly overpredicts the peak in the streamwise 
component B%x that occurs at about y+ » 15. The components of the normalized Reynolds 
stress tensor j-y = Rij/q2 are shown in Figure 6b. The agreement between the model 
predictions and the DNS results is again reasonable. The agreement in the case of the shear 
stress r12 is noteworthy. This is particularly important, since ri2 is the only turbulent stress 
to provide coupling between the mean flow equation and the turbulence equations. The mean 
velocity profile is shown Figure 6c. The model prediction is in good agreement with the DNS 
profile, the most notable difference being near the channel centerline. Finally, the model 
profile of the dissipation rate e is shown in Figure 6d. The model is again in good agreement 
with the DNS, but has a larger wiggle near the wall than the data show. This difference 
depends on the model transport equation for e, and we are currently exploring alternative 
formulations that aim at taking full advantage of the structure information carried in the 
new model. 

The Q-model has also been tested for fully-developed Poiseuille flow with system rotation. 
Here we consider rotation about the spanwise axis and compare results with the LES by 
Kim (1983) for the case ReT = uTh/v = 640 and Ro = 2hü/Ub = 0.068. The mean friction 
velocity HT is computed using the wall shear stress averaged on the two walls, h represents 
the channel half-width, Ub is the bulk mean velocity across the channel, and Q. is the frame 
rotation rate. 

A comparison of the model predictions for the turbulent intensities with the corresponding 
LES results is shown in Figure 7. The fully-developed case with no system rotation is also 
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included [Fig. 7(a)] as a reference case. The agreement between the model predictions and 
the LES results for this reference case is acceptable. In the rotating case, the model is 
able to capture the characteristic asymmetry in the turbulent intensity profiles induced 
by the system rotation and overall agreement with the LES predictions is acceptable. The 
model correctly predicts that the wall normal intensity is significantly higher on the unstable 
(pressure) side than on the (stable) suction side of the channel. Near the channel centerline 
the model is able to capture the reversal of the stress anisotropy (v+ becoming higher than 
u+) due to frame rotation. 

1.0    -0.5     0.0      0.5      1.0 1.0    -0.5     0.0      0.5      1.0 

y/h y/h 

FIGURE 7. Fully-developed Poiseuille flow at Rer = 640 with (a) no rotation and (b) with 
spanwise rotation (Ro = 0.068). Comparison of model predictions (lines) for the streamwise 
(u+) and wall-normal (v+) turbulence intensities with results from the LES (symbols) by 
Kim (1983). 

The predictions of the one-point Q-model for the case of turbulent flow through a straight 
cylindrical pipe with and without axial rotation are shown in Figure 8 (as lines). The effect 
of increased axial rotation on the axial mean velocity profile is shown in Figure 8(a) for fully 
developed pipe flow at a Reynolds number of Re0 = 20,000 based on the pipe diameter 
and axial velocity at the pipe centerline. The model captures the effect of axial rotation 
correctly and agreement with the experimental result of Imao et al. (1996) is excellent. Here 
the rotation number N = UejVfai\/U0 is the ratio of the circumferential wall velocity to the 
mean axial velocity at the pipe centerline. The effect of the axial rotation rate on the shear 
stress (vu), normalized with twice the turbulent kinetic energy k, is shown in Figure 1(b). 
Again agreement with experiments is good. An important parameter often reported for 
rotated pipe flow is the the damping coefficient d = (u2)(N)/(u2)(N = 0), which gives the 
ratio of the axial Reynolds stress component normalized by its value for the non-rotating 
case. The development of d(x) along the pipe centerline in the initial pipe section, where 
the turbulence is still developing, is a challenging prediction for standard turbulence models. 
As shown in Figure 8(c) for the case Re0 = 40,000, the one-point Q-model captures this 
initial development quite well. 
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FIGURE 8. Turbulent pipe flow with axial rotation, (a)-(b) Fully developed pipe flow at 
Re0 = 2xl04; Q-model predictions (lines) vs. experimental data (symbols) by Imao et al. 
(1996) for the axial mean velocity profile and structural parameter, (c) Developing pipe flow 
at Re0 — 4xl04; Q-model predictions (lines) vs. experimental data (symbols) by Zaets et al. 
(1985) for the evolution of the damping coeflicient. In cases (a) and (b) symbols correspond 
to: (▼) N=0, (□ ) N=0.5, and (• ) N=l. In case (c) symbols correspond to: (▼) N=0.15 
and (• ) N=0.6. Here the rotation number is defined as N — Uo,v,a.ii/U0- 

5. Conclusions 
The turbulence structure affects the dynamics in nonequilibrium turbulence and its effects 

must be emulated by engineering models that are designed for use in complex flow regimes. 
This poses a challenge to traditional turbulence models which completely neglect turbulence 
structure. Here we outlined the construction of a new type of model that captures struc- 
ture information missing from traditional one-point models. The model has been validated 
successfully for a wide range of deformations of homogeneous turbulence. Results obtained 
for simple wall-bounded flows are encouraging. We are currently evaluating the model in 
more complex flows. 
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Appendix B: An Algebraic Structure-Based Turbulence Model 

(Initial Development) 

W. C. Reynolds and S. C. Kassinos 

1. Introduction 

Flow predictions have become a standard feature of modern flow system design. Where tur- 
bulence is important one needs to have a good model for the turbulent stress and turbulent 
transport in order to produce adequate predictions of skin friction, flow separation, heat 
and mass transfer, and other flow features. As a result of the efforts of many contributors, 
turbulence models are now quite adequate for simple flows, but there remain important 
engineering problems where improved models are needed. For example, improved models 
for turbulence in rotating systems would enable better turbomachinery design. Our work 
has been motivated by this need. Our objectives have been as follows: 

• to identify one-point statistical quantities that describe the turbulence structure; 

• to understand how rotation affects the large-scale turbulence structure; 

• to develop turbulence models incorporating this new physical insight. 

The first part of this paper is a review of the new structure tensors and the way in which 
they are affected by mean strain and mean or frame rotation. The balance of the paper 
describes the ideas and status of a new structure-based turbulence model that we are 
developing for engineering use. This model employs two transport equations (e.g. k-e 
or k-uj) and an algebraic model relating the turbulent stresses to these scales and the 
mean deformation tensors. This algebraic structure-based model (ASBM) is constructed 
with heavy reference to rapid distortion theory (RDT). Consequently the ASBM produces 
stress states under rapid deformations that are consistent with RDT. Moreover, stresses 
produced by the ASBM are realizable. 

2. Turbulence structure tensors 

Vector stream function. Our new one-point structure tensors are defined in terms of the 
vector stream function of the turbulence, which in turn is defined by (Kassinos, Reynolds 
& Rogers 2001) 

u'i = *&%,;        %,k = 0. (2.1a, b) 

From the definition it follows that the vector stream function at one point is determined 
by the vorticity at all points through a Poisson equation, 

*Ufc=-4. (2.2) 
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The new structure tensors are defined in terms of one-point correlations of vector stream 
function gradients, and hence they contain non-local information about the turbulence. 

Stress tensor. The turbulent stress tensor can be expressed as 

Rij = v!iv!j = eipmejqn^'m,p Wn,q. (2.3a) 

For homogeneous turbulence this is 

Äii = y^(k)d3k (2.36) 

where i?y(k) is the energy spectrum tensor. R^ measures the componentality of the tur- 
bulence. If the turbulence has one zero component (say u'z = 0), then it is two-component 
(2C), but it is not necessarily two dimensional (2D). 

Dimensionality. The dimensionality tensor Dij is defined as 

Dij = K«K,i- (2-4a) 

If none of the vector stream function components varies with xi, then D1X = 0, indicating 
that the turbulence is 2D and independent of xx. It need not be 2C when it is 2D. For 
homogeneous turbulence 

Dij = f^-Enn(k)d3k (2.46) 

where Eij(k) is the energy spectrum tensor. This shows that D^ is dominated by the 
energy-containing eddies and determined by the way in which energy is distributed along 
rays in k-space. 

Circulicity. The circulicity tensor Fij is defined as 

Fij = %,nVj,n. (2.5a) 

For homogeneous turbulence this becomes 

Fij = J ^Wijlftdfc (2.56) 

where Wij(k) is the vorticity spectrum tensor. This shows that Ftj is dominated by the 
energy containing eddies and determined by the large-scale (coherent) vorticity of the 
turbulence. If the large-scale vorticity is entirely aligned with the xx axis, then all F^ 
other than Fxx are zero. 

Relations for homogeneous turbulence. For homogeneous turbulence, the contrac- 
tions of the structure tensors are all twice the turbulent kinetic energy k, 

Ru = Da = Fa = q2 = 2k. (2.6) 

Moreover, there is a constitutive relationship among the tensors, 
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Rij + Dij+Fij = q25ij. (2.7) 

This shows that only two of the tensors are linearly independent. It also suggests that it 
could be difficult to model turbulence in terms of a single one of the tensors as one hopes 
to do in Reynolds stress transport modeling. 

Normalized structure tensors. The normalized structure tensors are defined by 

Tij = Rij/q2        di:i = Di:i/q2        fij = Fij/q2. (2.8a - c) 

Structure tensor anisotropies. The anisotropy tensors are defined by 

ftf = ry - !<5y        dn = dii-3Si3        fa = fa ~ &*■ (2.9a-c) 

Anisotropy invariant maps of the type introduced by Lumley & Newman (1977) are very 
useful in examining the state of turbulence as characterized by these three anisotropies, 
which by (2.7) must sum to zero, 

fij + dij + fij = 0. (2.10) 

Third-rank structure tensor. One additional structure tensor is very important in 
rotating flows, 

Qijk = -u'j%,k = ejpr%,r%,k- (2.11) 

This tensor serves as a generator for the second-rank tensors: 

Rij — timpQmjp Dij = ^impQpmj ^ij = ^impQjpm- {Z.LZa — C) 

The fully symmetric part of Qijk does not contribute to the second rank tensors, but this 
is a crucial tensor for turbulence subjected to mean or frame rotation. We call this the 
stropholysis* and denote it by Q*jk, 

Qijk = I [Qijk + QjH + Qkij + Qikj + Qjik + Qkji] ■ (2.13) 

The general third-rank tensor is then 

Qijk = 6?  eijk + ztikmRmj + ^jim^mk + ^kjm^mi + Qijk' \^-^J 

3. Applications 

Study of the tensors. We have made extensive use of both rapid distortion theory 
(RDT) and direct numerical simulations (DNS) of turbulence to evaluate these structure 

* This tensor is non-zero as a result of the breaking of reflectional symmetry by rotation, and its name is 

derived from the Greek for "breaking by rotation". 
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tensors in work to be reported elsewhere.   The principal observations of this work are 
summarized below: 

• the tensors do indeed provide a useful one-point characterization of the turbulence struc- 
ture; 

• in homogeneous turbulence subjected to rapid irrotational mean deformation, Q*jk = 0 
and Tij = dij = {6ij - fa)/2; 

• in turbulence subjected to deformation at slow rates, the anisotropy of d is small in 
comparison to the anisotropies of r and f; 

• the anisotropy of f is nearly permanent following removal of mean deformation; 

• under rapid mean or frame rotation, the Fourier components üi(k, t) are rotated around 
their wavenumber vector k, which alters the correlation between different wave num- 
bers and reduces the transfer of energy to smaller scales. The structure obtained with 
extended rapid distortion gives r^ = fa = (5^- - dij)/2. 

The axisymmetric expansion anomaly.   For homogeneous turbulence subjected to 
irrotational axisymmetric expansion with a strain-rate tensor 

(3.1) 

RDT predicts that under rapid deformation the limiting axisymmetric stresses are 

(3.2) 

However, DNS (Lee and Reynolds 1985) and experiments (Choi and Lumley 1983) show 
that the Reynolds stress anisotropy that develops under slow deformation is larger than 
this RDT limit. Moreover, the DNS shows that when the straining is removed the stress 
anisotropy continues to increase. These are completely counter to the idea that isotropy 
will be restored when straining is removed. No turbulence model that has a "return to 
isotropy" term can possibly show greater anisotropy under slower deformation than under 
rapid. But the behavior is completely explained by the constitutive equation (2.10) and 
the observation that d returns quickly to isotropy while f is nearly permanent, which shows 
that r must behave exactly as the DNS and experiments indicate, and that the "return to 
isotropy" idea is not necessarily valid. 

Rapid pressure strain model. In Reynolds stress transport modeling one needs to 
model the rapid pressure-strain-rate term. For homogeneous turbulence this reduces to 
modeling a fourth-rank tensor (Reynolds 1976) 

M^ = |^^(k)d3k. (3.3) 
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Launder, Reece and Rodi (1975) (herefter denoted by LRR) developed a landmark model 
of M in terms of the Reynolds stress. They started with the most general fourth-rank ten- 
sor that can be constructed as a linear function of f. This involves a number of coefficients. 
Using definitions, continuity, and homogeneity, they determined all of the coefficients in 
terms of only one, which they then determined by fitting experiments. We have shown 
(Kassinos k Reynolds 1994) that it is possible to derive the value that they found exper- 
imentally using our new structure tensors. We first model M in terms of all linear forms 
involving both f and d, which involves more coefficients but adds a definition condition 
that allows all of the coefficients to be found. The resulting model for M(f Ld) agrees with 
RDT for irrotational deformations, for which f = d. Moreover, if we set d = 0 (limiting 
case of slow deformations), the coefficients and the model become virtually identical with 
what was found empirically by LRR! This is because the experiments used in their fit 
were for relatively weakly strained turbulence, where the dimensionality tensor is nearly 
isotropic. 

Rotational flows. Flows with strong mean or frame rotation can not be modeled properly 
without inclusion of the stropholysis tensor. We are exploring a transport equation model 
for Qijk- This would be used with a scale equation (e.g. e), so one could describe it as 
a "two-equation" turbulence model. However, one of the two equations has twenty-seven 
tensor elements, and calculations of this complexity are most certainly not reasonable for 
engineering use. Therefore, we have been working on a simpler approach to bringing in 
the key structural physics. 

4. A structure-based algebraic stress model 

The previous discussion indicates the importance and advantage of considering turbulence 
structure in engineering turbulence modeling and how complicated this can get. Therefore, 
we have been concentrating on developing a two-equation turbulence model that makes 
use of the ideas and insights from our structure-based turbulence modeling. We found that 
it is possible to incorporate some of the important ideas in an algebraic structure-based 
Reynolds stress model that can be used in a simple two-equation model for engineering 
analysis. The remainder of this paper deals with this algebraic stress model, which we 
denote as the ASBM, and its potential impact on two-equation turbulence modeling. 

Stress and structure. The ASBM uses an algebraic constitutive equation relating the 
normalized Reynolds stresses r^ to parameters of the turbulence structure. For axisym- 
metric eddies this model is (Kassinos and Reynolds 1994, Reynolds and Kassinos 1995) 

Tij = (1 - 4>)\{&ij ~ o-ij) + Ik^kpidpj + ekpjapi) + (ßüij . (4.1a) 

The corresponding model for the dimensionality tensor with axisymmetric eddies is 

dij = \{5ij -Oij). (4.16) 

The basis for this model and the parameters in it will now be described. 

Eddy axis tensor. The model is developed by superposing a field of two-dimensional 
turbulence fields (eddies) of different orientation and character, where each eddy can have 
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velocity components both around the axis and along the axis. The eddy axis vector is 
a, and the eddy axis tensor a,ij is the energy-weighted average direction cosine tensor of 
the eddy axes, Oy = ö^öy. The eddy axis tensor is determined by the kinematics of the 
mean deformation. Eddies tend to become aligned with the direction of positive mean 
strain rate, and they are rotated kinematically by mean or frame rotation. Interaction 
with other eddies tends to disorganize the eddy axes, restoring isotropy to a*/ and dij, but 
not necessarily to r^-. 

Vortical and jetal motion. Motion around the eddy axis is called vortical and motion 
along the axis is called jetal. The eddy jetting parameter $ is the fraction of the eddy 
energy in the jetal mode, and 1 - (f> is the fraction in the vortical mode. Under irrotational 
mean deformation, eddies remain purely vortical (0 = 0); in this case the eddy axis tensor 
aij is the normalized circulicity tensor fa. Shear produces jetal eddies, and in the limit of 
infinite rapid distortion (f> ->• 1 for shear in a non-rotating frame. For shear in a rotating 
frame, 0 ranges from 1 for zero frame rotation to 0 for frame rotation that exactly cancels 
the mean rotation in the frame, for which the mean deformation in an inertial frame is 
irrotational. Rapid rotation drives <j> to \ (equipartition of energy between the vortical 
and jetal modes). 

Stropholysis. Jetal turbulence results from a breaking of reflectional symmetry in the 
two-point correlations caused by mean or frame rotation. The stropholysis vector jk arises 
from the correlation between the vortical and jetal components. Hence yk = 0 for purely 
vortical turbulence (<f> = 0) or purely jetal turbulence (0 = 1). Typically jk is aligned with 
the total rotation rate vector ftfc. The stropholysis vector is the key factor in setting the 
shear stress in turbulent fields. It is connected with the absolute rotation rate (frame + 
mean flow relative to frame). 

Eddy flattening. If the motion around the eddy axis is not axisymmetric, the eddy 
is called flattened. Under rapid irrotational deformation in a non-rotating frame, eddies 
remain unflattened. Shear tends to flatten the eddies in planes perpendicular to the ab- 
solute mean rotation vector. Flattening is incorporated in the ASBM by modifications to 
the stresses produced by the axisymmetric stress model (4.1a) using a scalar flattening 
parameter x and a flattening tensor determined by the absolute rotation vector. 

Algebraic parameter models. The ASBM uses algebraic models relating the param- 
eters 0, 7fc, and x to tne eddy axis tensor, mean strain-rate and absolute rotation-rate 
tensors. The absolute rotation rate is used here because rotation influences the stresses 
through dynamics. These models were constructed so that the limiting stress states yielded 
by the model for shear in a rotating frame are consistent with the states found using RDT. 

Dependence on deformation rate. The model produces the structure (eddy axis tensor, 
eddy jetting and flattening parameters, stropholysis vector) and stresses as functions of 
the non-dimensional deformation rates S^r, QijT, and Q^r, where r is the time scale of 
the turbulence (r = k/e at high Reynolds numbers). The model contains a constant a0 

that makes the structural anisotropy weaker for slower deformation rates while allowing 
the proper RDT limits to be obtained for high deformation rates. 
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Strain and rotation. The ASBM first determines the eddy axis tensor resulting from 
the applied mean strain-rate tensor Sij. A rotation operation is then applied to take into 
account the kinematic effect of mean rotation on the eddies. These operations are carried 
out in the analysis frame, which may be rotating. These models were constructed so that 
the limiting structural state under rapid deformation is the same as found using RDT. 

Eddy axis computation. We first compute a*j} the eddy axis tensor that would result 
from the mean straining in the absence of mean rotation using 

a- = **« + a^Wr • (     ] 

Here a0 is the slow model constant, S2 = S^.nSlma^m, S*j = S^ - Skköij/3 is the 
anisotropic strain-rate tensor, and Sij = (Ui,j+Uj,i)/2 is the mean strain-rate tensor. 
The coefficient of 2 in the denominator allows (4.2) to produce the correct limiting eddy 
axis tensor for arbitrary rapid irrotational distortions. 

In order to generate a realizable a^- including the effects of rotation, we perform a rotation 
operation on a*j, 

a{j = HikHjia*kl (4.3) 

where the rotation tensor Hij is constructed to satisfy the orthonormal conditions 

HikHjk = Sij       HkiHkj = Sij. (4.4a, 6) 

We model H^ as a function of the mean rotation rate tensor Qij in the analysis frame, 

Hij = 5ij + a^- + ß^-. (4.5) 

where Q2 = ftijQij. The orthonormality condition requires 

a = ^2ß-ß2/2. (4.6) 

ß was set by reference to RDT for combined plane strain and rotation, where 

/0    e    0\ / 0     u)    0\ 
S£ =     e    0    0 fiy- =     -w    0    0     . (4.7) 

\0   0   0/ V 0     0    0/ 

By considering the kinematic distortion of line elements by this mean flow, one finds that 
the eddy axis tensor should evolve over time to a fixed point where 

e + u e-uj Ve2 - w2 

an = ——        a22 = ——        a12 =  ;         for e - w > 0. (4.8a - c) 
2e 2e 2e 
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This was used to determine ß as a function of e and w for this flow. The results were then 
generalized using the eddy shear parameter 

r — pq"-gr^rp' (4.§) 

bknbnmamkT 

The resulting model for ß is given in the Appendix. 

Treatment of eddy flattening. Eqns. (4.1a,b) were developed under the assumption 
that the eddies are axisymmetric. Our work with RDT shows this to be the case for 
turbulence subjected to irrotational mean deformation. However, when mean or frame 
rotation is involved, the eddies become non-axisymmetric. We handle flattening by a 
partial projection of the ri3- tensor on planes perpendicular to the flattening vector, which 
is assumed to be aligned with the absolute mean rotation vector. The projection operation 
is 

FT 

... _ pr pT    * (4.10) 

where r*m is the stress tensor given by the axisymmetric model (4.1a) and F[3- is the 
flattening tensor, 

.=^._X<M). (4.U) 

Here ttj is the total vorticity vector including frame rotation, Q%, = &%&£, and x is the 
flattening parameter. The amplitude factor A is determined such that rnn = 1. This 
projection maintains the realizability of the stress tensor. 

Models for the parameters. The parameters needed to calculate the Reynolds stress 
tensor from the eddy axis tensor are modeled in terms of invariants involving the structure 
and the mean deformation rates: 

a2 = aijaji        S
2 = ai3S*kS*k       Cl2 - ayC&nJ (4.11a - c) 

W=J^        X = ^SJk (4.12a, b) 

a2, W, and X define the space of turbulence structure over which we need to prescribe (f>, 
7fc, and x- Figure 1 depicts that space. The circle at a2 = 1 corresponds to the limit of 
RDT states where the eddy axis vectors are all aligned. The line at a2 = 1/3 indicates the 
only states possible when the eddy axis vectors are isotropic. The parameters are known 
exactly only on the 2D circle at a2 = 1 (from RDT) and on the isotropic line at a2 = 1/3. 
The expressions shown for (j)e are what RDT gives as the limiting state of 2D-3C turbulence 
that develops as a result of shear in a rotating frame*. The models for other regions of 
the space are interpolations from these values. These interpolations have been guided by 

* U\ = Tx2 is the mean flow, 512 = ^12 = T/2, and T] = -fi12/^12- 
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physical insight and other results from RDT. Different models are used in different W-X 
quadrants, where the effects of rotation and strain are quite different. The interpolation 
functions currently being used are given in the Appendix. 

The slow constant. The value of a0 = 1.7 used in ASBM-1 was determined by matching 
the stress anisotropy found in the high Reynolds number channel DNS of Moser et at. 
(1999) (see Fig. 5). It also gives reasonable results for homogeneous shear flow in a non- 
rotating frame (see Fig. 3a). 

♦e=(i-T|)/(i-Hi) <t»=(n-i)/(2Ti-i) 
xe=o 

x =ovte=0i-iy<2n-i) 

Xe = 
(1-T1) 

1 + (1-T1) 

FIGURE 1.    ASBM parameter modeling space. 

W 
(i-n) 

1 + 0-TD
2 

5. ASBM predictions for homogeneous turbulence 

The ASBM provides the normalized stresses r^- for given values of the anisotropic strain- 
rate tensor S*j, rotation-rate tensor %, frame rotation rate tensor ft£-, and turbulence 
time scale r. A variety of cases are presented here to show the effects of rotation as 
predicted by this model. 

Fig. 2a shows the results for axisymmetric contraction in a rotating frame where 

0      0 
n{. = I o    o 

o  -n   o 
(5.1a,6) 

for T > 0. Note that frame rotation reduces the anisotropy for low and moderate IV, but 
that the eddy axes all reach the RDT limit state an = 1. This makes the turbulence inde- 
pendent of the axis of rotation, in which case the turbulence becomes materially indifferent 
to the rotation and the r^ become the same as without rotation. 
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Fig. 2b shows the results for axisymmetric expansion (equations 5.1 for T < 0). The eddy- 
axis tensor in the RDT limit for this case has a-n - a-zz = 1/2, an = 0, and so the stresses 
are affected by rotation at all levels of ST. 

Figs. 3 show the results for several cases of shear in a frame that is rotating about the 
spanwise axis. There T is the shear rate T = 2S12 and 77 = -Qf

l2/^i2 is the ratio of the 
counter-rotation rate of the frame to the rotation rate of the shear. In all of these cases 
the RDT limit of the eddy axis tensor is axl = 1, but the stress states are very different 
because the stresses are affected dynamically by the absolute rotation. Note that for zero 
frame rotation the r__ component is largest, but as rj increases the other components 
become more important. Note the dramatic effect on the shear stress ri2. As the frame 
counter-rotation becomes greater than the rotation provided in the frame by the shear, r12 

becomes weaker and eventually changes sign. Since the turbulence energy production rate 
V is proportional to -ri2, beyond 77 of about 1.8 V becomes negative, so the turbulence 
will not be sustained. 

1^- 

0.2 

0.1 

0.0 

-0.1 

(b) 

s s / 
1 

IS ______ 
11 

22,33 

2        4        6 

\Su\ r 

8        10 

FIGURE 2. ASBM stress states for (a) axisymmetric contraction, and (b) axisymmetric 
expansion: with no swirl ( ); and with swirl Q,{z = 2|i>ii| ( ). 

Figs. 4 show the results for shear in a frame rotating about the streamwise axis. Note 
that a cross shear stress r.3 develops in this flow, and its sign depends upon the direction 
of frame rotation. This is a result of the breaking of reflectional symmetry by the frame 
rotation (stropholysis). 

All of these trends are consistent with the limited observations that are available. The 
stresses are all realizable, and the limiting stress states predicted by the model for large TT 

are all consistent with RDT. Therefore, the ASBM is very useful for looking at the effects 
of rotation on turbulence. 

6. Wall blockage 

Near a wall the structure and stress need to be adjusted for wall blockage. At a wall, 
the eddies must all lie in the plane of the wall and all must be fully jetal (0 = 1). We 
accomplish this with something resembling elliptic relaxation. After computing the eddy 
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FIGURE 3. ASBM stress states for homogeneous shear in a frame rotating about the 
spanwise axies: (a) non-rotating frame; (b)-(e) counter-rotating frame; (f) co-rotating 
frame. 
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FIGURE 4.      ASBM stress states for homogeneous shear in a frame rotating about the 
streamwise axis: (a) 0£3 = —^12; (b) fi23 = ^12- 

axis tensor for homogeneous turbulence, which we denote by a£-, we perform a modified 
projection of this tensor on planes parallel to the wall using the projection operator 

TTO.   _ °*j       "ij 
ij D 

Dl = l-{2-bkk)ah
nmbr, (6.1) 

where bij is the blockage tensor. We transform a^ using 
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a« = H&HJ& (6.2) 

At a wall normal to x2, the transformation produces aii + a33 = 1 and a22 = ai2 = «32 = 0 
at the wall. The same approach is used for correcting the homogeneous stresses r£- for 
wall blockage, 

Hij = ^^-        Dl = l-{2-bkk)rh
nmbnm. (6.3) 

JJr 

With this procedure, if 622 = 1 - 0{y) then ai2 and rt2 are O(y) as z2 = y -» 0, and a22 

and r22 are 0(i/2), which is the proper behavior. 

The blockage tensor b^ is computed using a method similar to elliptic relaxation. We solve 
the elliptic scalar problem 

»(Ä)=* (6.4a) 
dxk \     dxk   ) 

$ = 1    on solid boundaries (6.46) 

<&,n =0    at open boundaries (6.4c) 

where n denotes the unit normal vector at the boundary. Then, the blockage tensor b^ is 
taken as 

^ = ^1^       if       *,»*,» >0. (6.5a) 

At a point where all gradients of <& vanish, we average over surrounding points. A Taylor 
series then gives 

bij = *,ip ^jp $        if       *,„#,„ =0. (6.56) 

Figure 5 shows a test of this idea for channel flow. Here Ui(x2), k and e from the DNS 
by Moser et al. (1999) were used to determine S^r, and the ASBM was used to predict 
the m using a model for the blockage.* Note that the agreement of the stresses with the 
DNS is quite good, except very near the channel centerline where the mean strain rate and 
mean rotation rate both vanish locally but the stresses are not quite isotropic because of 
non-local influence by the surrounding turbulence. 

7. The two equation model 

The algebraic stress model can in principle be used with any two-equation turbulence 
model {e.g. k-e) that produces the turbulent time scale r. However, much better results 
should be obtained if the transport equation for the second scale {e.g.   E) is sensitized 

* The details of this model are not given here as the model is still under development.  The results are 

presented to indicate that the basic approach to blockage is viable. 
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y + 

FIGURE 5. Apriori test of ASBM in fully developed channel flow at ReT = 590, showing 
the validity of the blocking concept.  : DNS by Moser et al. (1999); : ASBM. 

to the structural information provided by the algebraic stress model. We are currently 
exploring various possibilities. For homogeneous turbulence one can use the e equation, 
the equation for r, the equation for 1/r = CJ, or any combination. Which works best for 
inhomogeneous flows is determined by the diffusion modeling. 

The r equation is the simplest for looking at homogeneous turbulence. For high Reynolds 
number homogeneous turbulence we take r = k/e. Typical of the modified scale equations 
we are now considering is 

DT 

Dt = i(l + 
2^2 n2r 

ft2T2 + Cn )-( 

2„-2 S*T .\z 
S

2
T* + CSJ £ 

(7.1) 

where V— ~l~Lij tJij is the rate of turbulent energy production.* The coefficient | was 
set by requiring that the energy of isotropic turbulence in a non-rotating fixed frame 
decay as £~6/5, as is appropriate when the low-wavenumber range of the energy spectrum 
varies as (wavenumber) k2 (Reynolds 1976). Frame or mean rotation reduces the rate 
of energy decay by decorrelating the velocity components at different wavenumbers and 
hence reducing the energy cascade. The rotational term in (7.1) is an adaptation of a model 
proposed for isotropic turbulence by Hadid, Mansour & Zeman (1994) (HMZ), in which 
we have introduced the eddy axis tensor so as to render the equation materially indifferent 
to rotation when the turbulence is two-dimensional with its axis of independence aligned 
with the mean rotation (Speziale 1981, 1985). This term reduces to the HMZ model 
for isotropic turbulence (a,ij = 6ij/3) with Cn = 5.4. The coefficient on V/e is unity 
for rapid straining; this matches the turbulence time scale variation for rapid dilatation 
of isotropic turbulence, for rapid distortion of the limiting 2D turbulence produced by 

* Note that V/e -2rijSijT and hence the production term cannot drive T to be negative. 
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rapid axisymmetric contraction, and for rapid distortion of the limiting 3C-3D turbulence 
produced by rapid axisymmetric expansion. This coefficient needs to be reduced for finite 
deformation; results reported here used Cs ~ 2. 

For inhomogeneous turbulence, it has been found by many others that diffusion of e or the 
reciprocal time scale u = 1/r works reasonably well. If we recast (7.1) as an e equation, 
add a diffusion term, and configure the terms so that they are appropriate for both low 
and high Reynolds numbers, the e equation becomes 

De        (ix ,  5     ftV» \ e     ( S2r2     \V        d   (.  .      ,      _       . de \ 
-    - +     1 + -r—     - + ä      iuSmn + «e^mnT Ö  1 
JT        V S2T2 + CsJT        dx™\ fan/ Dt        vb     bn2T2 + Ca. - ,      x (7.2a) 

If instead we add a diffusion term to the equation for w = 1/r, it becomes 

Du 9 

Dt 

(       n2T2   \    (   s2r2   \v]     a (. .    ,    _    . duj \ 
I l +          _      _ _      _    + _      [Udmn + CXuRmnTl-  ) . 

(7.26) 
In view of the importance of SijT in the algebraic stress model, we favor diffusing w over 
diffusing e. It might be thought that one could add a simple diffusion term to (7.1), 
but upon examination of the log region of a boundary layer one finds that the associated 
diffusion coefficient aT must be -aw < 0, and this is undesirable. 

The k equation is modeled by 

Dk    „ d (dk \ 
[v5mn + akRmnT] -^- 1. (7.3) 

Dt dxT 

These are the scalar equations used in the work reported herein. Note that in a channel 
flow with Ui(x2) the diffusive transport is determined by Rn and not by fc, so our model 
exhibits the reduced transport afforded by Durbin's (1995) V2F model. 

A model for the turbulence time scale r in terms of k and e is also needed. This needs to 
depend on the Reynolds number, giving r = k/e at high Reynolds numbers and finite r 
for zero k at low Reynolds numbers. We are experimenting with forms like 

~i(7+V<r>,+»#)- (74) 

Bifurcation diagram for shear with spanwise rotation. Under certain conditions, 
homogeneous turbulence subjected to shear in a rotating frame can attain an equilibrium 
state in which the structure (a^) and normalized stresses r^- remain constant while the 
energy and dissipation rate grow and the time scale r remains fixed. We consider the 
case where the frame rotation is aligned with the mean rotation and the mean velocity 
gradient in the frame is Ui,j = T6a6j2- Figure 6 shows the fixed-point states as a function 

of n = -fi{2/^i2 as found from (7.1) and from the standard e model equation, both using 
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the ASBM. Here 77 is the ratio of the frame rotation rate to the mean rotation rate and 
is positive when the frame counter-rotates relative to the mean rotation. Note that fixed 
points with finite r are obtained only over a limited range of 77. Outside this range r 
continues to increase without limit. 

0.3 

0.2 

10 

0.1 

0.0 

FIGURE 6.     Bifurcation diagram for homogeneous shear flow in a frame rotating about 
the spanwise axis:  ASBM using the standard e equation ( ); ASBM using the r 
equation ( ). 

8. Mixing layer in a rotating frame 

We have used provisional versions of the ASBM to examine the effects of frame rotation 
on the self-similar turbulent mixing layer. Figure 7 shows the mean velocity field predicted 
by using the standard k-e and k-u> models and the ASBM with the standard ui equation. 
Note that the ASBM does well matching experimental data. We are currently making 
calculations for the mixing layer in a frame rotating about the streamwise axis. The ASBM 
predicts a thinning of the shear layer as a result of the shear stress reduction brought about 
by the frame rotation. The ASBM also gives a cross stress R13, gradients in R13 lead to 
spanwise mean motion C/3, and this further modifies the stresses. Experimental or DNS 
results for mixing layers with streamwise frame rotation would be very useful for assessing 
these predictions. 

9. Conclusions 

We believe that our work has established the importance of considering turbulence struc- 
ture in modeling complex turbulent flows. The one-point structure tensors we have intro- 
duced allow one to distinguish clearly between 2D-2C, 2D-3C, and 3D-3C turbulence. The 
ASBM produces realizable turbulent stresses, exhibits the correct behavior with complex 
combinations of mean straining and mean or frame rotation, and becomes materially indif- 
ferent to rotation when the turbulence becomes 2D with its axis of independence aligned 
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FIGURE 7.     Mean velocity profile in a self-similar turbulent mixing layer: standard k-e 
model ( ); standard k-u model ( ); and ASBM using k-u equation ( ). 
Points are from the experiments in a non-rotating frame by Liepmann k Laufer (1946). 

with the axis of rotation. Combined with modifications of the e or w equations that take 
advantage of the structural information provided by the ASBM, the ASBM should lead to 
improved two-equation turbulence models of the type needed in engineering. That is the 
primary objective of our current work. 
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